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Moving from Exploring Patterns to Causal Explanations  
in Ecosystems Science Reasoning 

 
Problem/Background 

Understanding the difference between correlation and causation is a critical concept in scientific 
explanation. The distinction is instantiated in the Next Generation Science Standards (NGSS) in the 
Cross-Cutting Concepts of “Patterns” and “Cause and Effect” (Achieve, 2013). While the standards 
suggest that “patterns can be used to identify cause and effect relationships” (PAT-M3) and that “patterns 
of change can be used to make predictions”  (PAT-E2), the standards also recognize that “empirical 
evidence is required to differentiate between cause and correlation and make claims about specific 
causes and effects” (CE-H1). Helping students to realize that patterns can be used to identify possible 
cause and effect relationships and that scientist have means to intervene on patterns to discern 
causation—thus differentiating co-variation and causation—are important goals for science education. As 
science educators, it would help us to more deeply understand these distinctions and how students come 
to understand them.  

Noticing patterns, both in what one observes and in the outcomes from empirical data can spur further 
observation, investigation and, in some cases, experimentation. Those who study the nature of science 
and causal inference have argued that intervention is critical to drawing causal conclusions (e.g. Gopnik 
et al., 2004; Pearl, 2000). A prevailing model of how humans engage in causal reasoning is a Causal 
Bayes Net (CBN) Model (e.g. Glymour, 2001; Gopnik & Schulz, 2007), which involves summing across 
multiple causal instances to infer causality despite probabilistic inputs. But simple induction is not enough 
and can easily lead to confusing correlation with causation, particularly in cases when a plausible (though 
not necessarily accurate) causal mechanism can be discerned. Therefore, a critical component in CBN 
models is the ability to intervene and to act empirically on variables to be able to assess their causal 
potency (Gopnik & Schultz, 2004; Gopnik et al., 2004; Lagnado & Sloman, 2003; Steyvers, Tenebaum, 
Wagenmakers, & Blum, 2003). CBN models argue that, while one can glean information about potential 
causal strength from co-variation, it is the ability to screen off variables and assess the outcomes that 
allows developing an understanding of causal structure to realize a fully causal account. Screening off 
enables one to investigate plausible causal mechanisms that account for the patterns. As aligned with the 
NGSS standards, fully causal accounts articulate both covariation pattern and causal mechanisms.  

In order to elucidate causal relationships in the sciences, scientists design experiments that are 
randomized, replicated, controlled, and conducted at an appropriate temporal and spatial scale for the 
hypothesis being tested (Tilman, 1989; Carpenter, 1996; Knapp et al., 2012). Ecosystems scientists are 
no exception, despite the complex environments in which they work. They have developed ways to 
intervene on relationships to help them to discern causality (Weathers et al, 2007). 

However, a long history of research in science education shows an over-reliance on co-variation to 
suggest a causal relationship and a tendency to view any covariate as causal even in cases where it was 
merely correlational (Kuhn et al, 1988). Given the opportunity to set up experiments, students in 
elementary and middle school often generate uninformative experiments and make judgments that were 
based on inconclusive or insufficient data while ignoring inconsistent data and disregarding surprising 
results. (See Zimmerman, 2000 for a review.) The tendency to over-rely on co-variation is particularly 
problematic when reasoning about large complex systems such as ecosystems where covariation in 
terms of temporal and spatial contiguity can be an important cue to the possibility of a causal relationship. 
However, as the covariates become increasingly distant or delayed, they tend to be missed—resulting in 
shortsightedness and a focus on local, immediate factors over temporally and spatially remote ones 
(Grotzer & Tutwiler, 2014).  



Despite these difficulties, research suggests some possible paths forward. Schauble and colleagues 
(Schauble, Glaser, Raghavan, & Reiner, 1992) found that some learners generate more alternative 
hypotheses, conduct controlled experiments and more extensively search problem spaces. Studying what 
these learners do may help educators develop supports for all leaners. Sandoval and Reiser (2005) have 
argued that students need to understand the epistemological commitments that scientists make—the 
processes they value for generating and validating knowledge. They call for an understanding of the ways 
of knowing and finding out in the discipline, for instance, “Good explanations are based on evidence from 
investigations.” And “scientific explanations emphasize evidence, have logically consistent arguments, 
and use scientific principles, models, and theories. The scientific community accepts and uses such 
explanations until displaced by better scientific ones. When such displacement occurs, science advances” 
(NRC, 1995). They call for foregrounding these commitments in the context of inquiry-based approaches. 
Recent research also reveals that students faced with contextualized problems employ a variety of 
strategies for experimentation (McElhaney & Linn, 2011). Specifically in the context of developing causal 
explanations in complex problem spaces, research shows that when students have information about 
causal mechanisms, they often can override spatial and temporal gaps that separate co-variates (Grotzer 
& Solis, 2015).  

Immersive simulated virtual environments provide an opportunity for students to interact with ecosystem 
components in an experimental manner and to conduct authentic scientific experimentation in a realistic, 
contextualized, but virtual setting. Offering students opportunities to investigate rich contexts enables 
them to discover the nuances and complexity within that domain as well as patterns that generalize 
beyond that domain (Berland & Reiser, 2010). Context rich problems are important in helping students to 
develop approaches to inquiry that map closely to what scientists actually do, the theory rich contexts that 
they focus on (Koslowski, 1996), and how an investigation develops and changes over time (Sandoval & 
Reiser, 2004; Berland & Reiser, 2010). Scientist characters in the immersive world can offer students 
information about the epistemological commitments that they make as they transition from finding co-
variation patterns to intervening upon those patterns and analyzing causality. 

This paper reports on the analysis of data collected in May to June of 2017 (as part of a broader study) in 
which we analyzed the level of students explanations for what was happening in a complex eutrophication 
scenario in an ecosystem. Specifically, we were interested in the following questions: 

1. If given the opportunity, in a virtual world, to gather evidence of correlational patterns, information 
about mechanisms, and intervene through experimentation to account for the mechanisms in play 
in a given instance, what would students’ resulting explanations look like?  

2. How did students’ explanations accommodate both covariation patterns and mechanistic 
accounts of the ecosystems dynamics?  Did students typically include one or both in their 
explanation? 

3. What characterized the ways that students spoke about covariation patterns?  
4. What characterized the ways that students spoke about causal mechanisms?  

Design 

A study was conducted with seventh grade students (n = 118) (as part of a larger investigation) in 5 
classrooms of 4 teachers with a ten-day, technology-based, inquiry-oriented ecosystems science 
curriculum that they were using (described below). On the ninth day, students were asked to write their 
explanation for what had caused the environmental problem in the curriculum. (What causes all of the 
larger fish in a pond to die overnight?)     

 



Curriculum 

Students participated in a problem-based curriculum within a Multi-User Virtual Environment (MUVE). It is 
based on a virtual world called EcoXPT. (See Figure 1.) Students can make various measurements while 
in the world using a set of measurement tools. (See Figure 2.) During the first three days, students 
explored the world and were instructed to “get to know it.” On about the third day, students discovered 
that a fish die off had occurred on a certain day within the world. They began to investigate possible 
causes for the fish die off by traveling back and forth in time before and after the event, and collecting 
data on population levels and water quality measurements. They used data tools in the world to view and 
graph this data which allowed them to see patterns between the different types of data. (See Figs. 3 and 
4.) 

   

Fig. 1 EcoXPT Virtual World        Fig. 2. Measurement Tools 

 

   
Fig. 3. Data Table     Fig. 4. Graphs of Co-variation Relationships 
 
 
The problem scenario was complex and involved an eutrophication scenario (that resulted in a fish die 

off) with interacting, dynamic causes. See Figure 5. 



 

Fig. 5. A Complex Underlying Eutrophication Scenario 

Students also had access to experimental tools and to scientists in the world who shared the rationale for 
certain approaches and their epistemological assumptions. (See Figs. 6 and 7). This included tools that 
were available in a lab building such as tolerance tanks (See Figs. 8 and 9) and comparison tanks (See 
Figs 10 and 11) as well as experimental tools that were used out in the virtual world such as the 
mesocosms (see Fig. 6) and tracer tools (See Figs. 12 and 13). 
  

 

Fig. 6. Mesocosm Experimental Tool             Fig. 7. Scientist Character in the World 

 

 

 



 

 

 

 

 

 

Fig. 8 Tolerance Tanks          Fig. 9. Tolerance Tanks Results 

 

 

 

 

 

 

Fig. 10. Comparison Tanks        Fig. 11. Comparison Tanks Results 

Fig. 12 Tracer Tools          Fig. 13 Tracer Tools Results 

Additional supporting structure in the form of Thinking Moves posters and videos were shared with the 

students.  (See Appendix A.) 

Coding and Analysis 

Emic coding was conducted to assess how students talked about covariation patterns and mechanisms in 
their explanations. A grounded-theory approach (Glaser & Strauss, 1967; Charmaz, 2006) was used to 
generate categories from the data. Findings from the extant literature offered insights and focus, however, 



the intent was not to confirm a theory-driven, etic framework but rather to allow new insights from the data 
that also were informed by existing research (Strauss & Corbin, 1994). 

 
Findings 
 
As might be predicted from the extant literature, students used the resources available to them in their 
causal reasoning. Across the data sample, students used information about covariation patterns, 
mechanisms, and also depended upon testimony from non-player characters in the world including that of 
scientists. Some students relied upon multiple sources of information, yet students also revealed distinct 
tendencies in how they relied upon each type of information. Further there were differing levels of 
sophistication within each framing tendency. Each framing tendency is described below with samples 
from student protocols: 

 
1. A tendency to rely upon the use of covariation patterns to make a connection.  

Covariation patterns can be an important indicator that two variables are linked. The NGSS call for a 
focus on patterns as a means of identifying causal relationships (PAT-M3). While the NGSS do not frame 
the Performance Expectation in terms of identifying “possible causal relationships,” science generally 
recognizes that co-variation is not the same as causation and that it is possible to have 1) spurious 
correlation; 2) correlation that is indirectly caused by a third variable; and 3) correlation that suggests a 
necessary but not sufficient condition for causation (where another variable is needed as a co-actor with 
the first in order to cause the outcome). Some of the students reasoned about patterns in ways that 
avoided confusing correlation with causality while others did not.   

Patterns as Causation. One tendency that students revealed was to frame their explanations in terms of 
variables changed in relation to each other (co-variation patterns) and to offer this as their causal 
explanation. They conflated pattern change with causal change. In this framing, students referred to a 
pattern or correlation in the data. They did not point to a causal mechanism, but substituted correlated 
patterns of change for causation.  For instance, “When the phosphate levels go up, the algae goes up. 
Then the phosphate levels go down and the algae go down causing bacteria to go up.”  (See Appendix B 
for an example.) 

Patterns as Outcomes from Dynamic Balance/Variable Levels as Mechanism. A more conservative 
response that is potentially also more sophisticated is to focus on the patterns in terms of dynamic 
balance and levels and to point to levels as the mechanism for the outcome. Taken alone, this pattern 
does not offer information for what is behind the change in level (though covariation patterns that discuss 
levels can be combined with mechanism information as discussed below). This framing recognizes that 
levels of balance are important to the causal dynamics of ecosystems. These students talked about levels 
going up and down. For instance, “The fertilizer increased the amount of algae as shown when we 
conducted an experiment. The water temperature (when it is hot) also affected the bacteria increasing it 
up to 3,000. The bacteria affect the amount of dissolved oxygen by decreasing it… …If the amount of 
dissolved oxygen reached 3, then both the Bluegill and Large Mouth Bass would die.”  This reasoning 
pattern seems like an important step in developing hypotheses. It does not over-reach beyond the data 
given.  

  
2. A tendency to use mechanism to make a connection 

Some students focused on how the factors that could act as possible mechanisms to result in an 
outcome.   



Token explanation In this framing, students inserted the name of a variable in place of a mechanism. This 
particular pattern yielded low level explanations that did not attend to non-obvious causes and did not 
contain substance as to how the mechanism worked. A common pattern is to state a mechanism as a 
token explanation and then to give a correlation pattern to explain it.  “I think that the fertilizer caused the 
fish to die. The reason is because when the fertilizer was first put in, the water started to look dirtier, then 
we saw that the population of bluegills and largemouth bass was going down.”  See Appendix B for 
examples. 

Behavior of a Mechanism.  In this framing, students gave an explanation of what the mechanism does in 
terms of its behavior in order to cause an outcome. “Phosphates and nitrates caused the amount of algae 
to grow because the algae use the nutrients in it to live.” “When algae died, it caused increased in 
bacteria because they could feed on the dead algae.” (See Appendix B.) 

In complex scenarios in which one cannot perceive both sides of the covariation relationship, mechanism 
can be especially powerful in helping students to discern that a causal relationship exists (Grotzer & 
Tutwiler, 2014; Grotzer & Solis, 2015). Mechanism knowledge therefore can be a powerful means of 
getting to know the causal dynamics of a system in which all of the relationships are not salient. 

Mechanism explanations often followed a domino-type narrative of what caused what to happen but often 
spoke as though the dynamics were event-like rather than process like (Grotzer et al., 2013) and as 
though the events were happening to single organisms as opposed to populations. 

3. Integrated use of covariation and mechanism information. 

The most common tendency was an integrated use of covariation and mechanism such that they were in 
explanation of each other. The dynamic pattern was offered and it was followed with causal mechanisms 
to explain the pattern part of the causal story.   

For instance, “The fertilizer contains nitrates and phosphates which caused algae to grow rapidly. After 
the fertilizer cycled out of the pond, the algae lost the nutrients it had become dependent upon which 
caused some of the algae to die. The dissolved oxygen levels lowered due to less producers in the pond. 
There was also 100% cloud cover for three days not allowing the algae to do photosynthesis, lowering the 
dissolved oxygen…”  (See Appendix B.) 

These explanations often had significant depth even though they were not free of causal gaps in the 
explanations. 

 
Overall Findings and Discussion 

Table 1 shows the percentage of students offering each type of explanation. The forms of explanation 
were not mutually exclusive and students could use different approaches for different portions of their 
explanations. Therefore, the totals do not add up to 100%. While Pattern as Causation is not the most 
common explanation, it is an instructional issue of concern that 36% of the students offered this type of 
explanation for at least a portion of their explanation. 

Table 2 shows the breakdown of which students used mechanism only, covariation only, or an integrated 
explanation. 

In summary,  

 Students with the deepest explanations had well integrated instances of patterns as 
covariation/dynamic equilibrium with mechanism. This accounted for most of the students. 



 Explanations focused only on patterns were not as common and are not wrong, per se, as long 
as they don’t extend beyond the correlations; students viewed these as explanations perhaps 
confounding correlational and causal patterns. 

 Explanations with only mechanism tended to include narratives that told the story of what 
happened but without clear connection to population data. 

 Mechanism only explanations varied in level; some were very low level with superficial features to 
the explanation (obvious causes) while others included complex, deep level mechanisms such as 
photosynthesis and respiration. 

 Token explanations were present but less common, perhaps due to the support to investigate in 
the curriculum.  

In an instructional sense, these patterns suggest different types of responses.  In instances in which 
students have not included mechanism information, a deeper focus on how particular causal mechanisms 
behave and how they inform what might be happening in the causal dynamics is warranted. In instances 
in which students told the story of the mechanisms without the broader population levels, instruction might 
highlight that the causal dynamics occur at the level of populations and that the changes are dynamic and 
process like. This might help students to realize that the causal story is not a simple linear narrative but a 
process of ups and downs. 

Understanding the relationship between co-variation and causation is important for helping students to 
learn causal explanation in the sciences. The role of mechanism is especially important in environmental 
problems when one cannot necessarily discern co-variation relationships due to spatial and temporal 
factors. Recognizing that mechanism and covariation can both be primary and powerful modes of causal 
induction invites further investigation into how students understand the role of each in scientific 
explanation.  
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Appendix A: Thinking Moves 

 

   



Appendix B. Student Responses 

   
Covariation Patterns as Explanation 

 

   

Level as Mechansim 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Token Explanation (And Pattern as Explanation)    Mechanism as Explanation 

 

 

   
 

Integrated Covariation Pattern and Mechanism   

 



Type of 
Response 

Pattern as 
Causal 
Explanation 

Covariation 
Pattern 
Level as 
Mechanism  

Token 
Explanation 
as 
Mechanism 

Mechanism 
as Behavior 

Integrated 
Covariation 
and 
Mechanism 

Other** 

Percentage 
of Students 

  

36.44%  31.35%  9.32%  83.05%  72.03%  4.24% 

Notes: 

*Responses fall into more than one category. Thus, the total is more than 100% of the students. 

**Other accounted for two responses that did not fit any categories; an unreadable response, and a 
blank response. 

  

Table 1. Percentage of Responses 

   



 

Type of 
Response 

Integrated 
Covariation 
and 
Mechanism  

Mechanism 
Only 

Covariation 
Only 

Neither 

Percentage of 
Students 

  

72.03%  10.17%  9.32%  8.47% 

Table 2. Percentage of Integrated Response, Mechanism Only, and Covariation Only 
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